Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibres with fixed 40, 45 and 50 mol% P2O5
نویسندگان
چکیده
Previous studies investigating manufacture of phosphate-based glass fibres from glasses fixed with P2O5 content less than 50 mol% showed that continuous manufacture without breakage was very difficult. In this study, nine phosphate-based glass formulations from the system P2O5-CaO-Na2O-MgO-B2O3 were prepared with P2O5 contents fixed at 40, 45 and 50 mol%, where Na2O was replaced by 5 and 10 mol% B2O3 and MgO and CaO were fixed to 24 and 16 mol%, respectively. The effect of B2O3 addition on the fibre drawing, fibre mechanical properties and dissolution behaviour was investigated. It was found that addition of 5 and 10 mol% B2O3 enabled successful drawing of continuous fibres from glasses with phosphate (P2O5) contents fixed at 40, 45 and 50 mol%. The mechanical properties of the fibres were found to significantly increase with increasing B2O3 content. The highest tensile strength (1200 ± 130 MPa) was recorded for 45P2O5-16CaO-5Na2O-24MgO-10B2O3 glass fibres. The fibres were annealed, and a comparison of the mechanical properties and mode of degradation of annealed and non-annealed fibres were investigated. A decrease in tensile strength and an increase in tensile modulus were observed for the annealed fibres. An assessment of the change in mechanical properties of both the annealed and non-annealed fibres was performed in phosphate-buffered saline (PBS) at 37℃ for 28 and 60 days, respectively. Initial loss of mechanical properties due to annealing was found to be recovered with degradation. The B2O3-containing glass fibres were found to degrade at a much slower rate as compared to the non-B2O3-containing fibres. Both annealed and non-annealed fibres exhibited a peeling effect of the fibre's outer layer during degradation.
منابع مشابه
Compositional dependency on dissolution rate and cytocompatibility of phosphate-based glasses: Effect of B2O3 and Fe2O3 addition
The unique property of phosphate-based glasses and fibres to be completely dissolved in aqueous media is largely dependent on the glass composition. This article focuses on investigating the effect of replacing Na2O with 3 and 5 mol% Fe2O3 on cytocompatibility, thermal and dissolution properties of P2O5-CaO-Na2O-MgO-B2O3 glass system, where P2O5 content was fixed at 45 mol%. The effect of incre...
متن کاملEffect of Boron Addition on the Thermal, Degradation, and Cytocompatibility Properties of Phosphate-Based Glasses
In this study eight different phosphate-based glass compositions were prepared by melt-quenching: four in the (P2O5)45-(CaO)16-(Na2O)15-x -(MgO)24-(B2O3) x system and four in the system (P2O5)50-(CaO)16-(Na2O)10-x -(MgO)24-(B2O3) x , where x = 0,1, 5 and 10 mol%. The effect of B2O3 addition on the thermal properties, density, molar volume, dissolution rates, and cytocompatibility were studied f...
متن کاملCharacterisation of CorGlaes® Pure 107 fibres for biomedical applications
A degradable ultraphosphate (55 mol % P2O5) quinternary phosphate glass composition has been characterised in terms of its chemical, mechanical and degradation properties both as a bulk material and after drawing into fibres. This glass formulation displayed a large processing window simplifying fibre drawing. The fibres displayed stiffness and strength of 65.5 ± 20.8 GPa and 426±143 MPa. While...
متن کاملEffect of P2O5 on Crystallization Behavior and Chemical Resistance of Dental Glasses in the Li2O-SiO2-ZrO2 System
Commercial dental lithium disilicate based glass-ceramics containing various amounts of P2O5 were synthesized. Regarding the crystallization behavior and physico-chemical properties of the glasses, the optimum percent of P2O5 was determined.as 8 %wt. Crystallization behavior of the glasses was investigated by X-ray diffraction (XRD) and differential thermal analysis (DTA). The micro-hardness a...
متن کاملFlexural and Impact Properties of Stainless Steel based Glass Fibre Reinforced Fibre Metal Laminate under Hygrothermal Conditioning
Fibre metal laminates (FMLs) have appeared as the most suitable materials for shipbuilding, aeronautical and aerospace applications due to their superior mechanical properties over traditional materials. In this paper, degradation in flexural and impact properties of glass fibre/epoxy composite (GF/E composite) and stainless steel glass fibre/epoxy fibre metal laminate (SS FML) due to hygrother...
متن کامل